SILECT[†] TRANSISTORS[‡]

- For Medium-Power Amplifiers, Class B Audio Outputs, Hi-Fi Drivers
- Also Available in Pin-Circle Versions . . . 2N5447, 2N5448
- For Complementary Use with 2N3704 thru 2N3706 or A8T3704 thru A8T3706

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	2N3702 2N3703
	A8T3702 A8T3703
Collector-Base Voltage	-40 V^* -50 V^*
Collector-Emitter Voltage (See Note 1)	-25 V* -30 V*
Emitter-Base Voltage	$-5 V^* -5 V^*$
Continuous Collector Current	← —-200 mA*
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 2)	
Continuous Device Dissipation at (or below) 25°C Lead Temperature (See Note 3)	← {1.25 W§} → 500 mW*}
Storage Temperature Range	-65°C to 150°C*
Lead Temperature 1/16 Inch from Case for 10 Seconds	← —260°C*——►

NOTES: 1. These values apply when the base-emitter diode is open-circuited.

- 2. Derate the 625-mW rating linearly to 150°C free-air temperature at the rate of 5 mW/°C. Derate the 360-mW (JEDEC registered) rating linearly to 150°C free-air temperature at the rate of 2.88 mW/°C.
- 3. Derate the 1.25-W rating linearly to 150°C lead temperature at the rate of 10 mW/°C. Derate the 500-mW (JEDEC registered) rating linearly to 150°C lead temperature at the rate of 4 mW/°C. Lead temperature is measured on the collector lead 1/16 inch from the case.

USES CHIP P20

^{*}The asterisk identifies JEDEC registered data for the 2N3702 and 2N3703 only. This data sheet contains all applicable registered data in effect at the time of publication.

[†]Trademark of Texas Instruments

[‡]U.S. Patent No. 3,439,238

[§]Texas Instruments guarantees these values in addition to the JEDEC registered values which are also shown.

TYPES 2N3702, 2N3703, A8T3702, A8T3703 P-N-P SILICON TRANSISTORS

*electrical characteristics at 25°C free-air temperature

www.datasheetcatalog.com

PARAMETER		TEST CONDITIONS			2N3702 A8T3702		2N3703 A8T3703		UNIT
					MIN	MAX	MIN	MAX	
V(BR)CBO	Collector-Base	$I_{C} = -100 \mu A$,	, I _E = 0		-40		-50		V
	Breakdown Voltage				-40		-50		\ \
V(BR)CEO	Collector-Emitter	I _C = -10 mA,	I _B = 0,	See Note 4	-25		20		V
	Breakdown Voltage						-30		
V(BR)EBO	Emitter-Base	$I_{E} = -100 \mu A$, I _C = 0		-5		_		V
	Breakdown Voltage						-5		
СВО	Collector Cutoff Current	$V_{CB} = -20 V$,	IE = 0			-100		100	nΑ
^I EBO	Emitter Cutoff Current	$V_{EB} = -3 V$,	IC = 0			-100		-100	nA
hFE	Static Forward Current Transfer Ratio	$V_{CE} = -5 V$,	$I_C = -50 \text{ mA},$	See Note 4	60	300	30	150	
V _{BE}	Base-Emitter Voltage	V _{CE} = −5 V,	$I_C = -50 \text{ mA},$	See Note 4	-0.6	-1	-0.6	1	V
VCE(sat)	Collector-Emitter	I _B = -5 mA,	I _C = -50 mA	A, See Note 4		-0.25		-0.25	V
	Saturation Voltage					-0.25			
fT	Transition Frequency	$V_{CE} = -5 V$,	$I_C = -50 \text{ mA},$	See Note 5	100		100		MHz
C _{obo}	Common-Base Open-Circuit	V _{CB} = -10 V,	IE = 0,	f = 1 MHz		12		12	pF
	Output Capacitance				12	12		12	br pr

NOTES: 4. These parameters must be measured using pulse techniques, $t_W = 300 \,\mu s$, duty cycle $\leq 2\%$.

THERMAL INFORMATION

FIGURE 1

FIGURE 2

^{5.} To obtain f_T , the $|h_{fe}|$ response with frequency is extrapolated at the rate of -6 dB per octave from f = 20 MHz to the frequency at which $|h_{fe}| = 1$.

^{*}The asterisk identifies JEDEC registered data for the 2N3702 and 2N3703 only.