

Vrsm Vrrm	VvRMS	I _D (T _{amb} = 45 °C) 4 A		
v	ν	Types	Cmax µF	$_{\Omega}^{Rmin}$
100	40	SKB B 40 C3200/2200	10000	0,25
400	125	SKB B 80 C3200/2200	3000	8,0
800	250	SKB B 250 C3200/2200	1700	1,6
900	380	SKB B 380 C3200/2200	1800	2,4
1200	500	SKB B 500 C3200/2200	800	3
V(BR)min V	VVRMS V	Avalanche Type		
1300	500	SKBa B 500 C3200/2200	800	3

Symbol	Conditions	SKB SKBa	Units
ID	T _{amb} = 45 °C; isolated ¹⁾ chassis ²⁾	2,7 4,0	A A
IDCL	T _{amb} = 45 °C; isolated ¹⁾ chassis ²⁾	2,2 3,2	A A
IFSM	T _{Vj} = 25 °C, 10 ms T _{Vj} = 150 °C, 10 ms	115 100	A
i ² t	T _{VJ} = 25 °C, 8,310 ms T _{VJ} = 150 °C, 8,310 ms	66 50	A ² s A ² s
PRSM	t _p = 10 μs; avalanche type	2000	W
VF	T _{VJ} = 25 °C; I _F = 10 A	1,25	٧
V(TO)	T _{VJ} = 150 °C	0,85	v
п	T _{VJ} = 150 °C	24	mΩ
IRD	T _{VJ} = 25 °C; V _{RD} = V _{RRM} = 100 V ≥ 400 V V _{RD} = V(BR)min	20 5 5	μΑ μΑ μΑ
	T _{VJ} = 150 °C; V _{DR} = V _{RRM} = 100 V ≥ 400 V	1 0,6	mA mA
trr	T _{VJ} = 25 °C	typ. 10	μs
fG		2000	Hz
Rthja	isolated ¹⁾ chassis ²⁾	22 15	°C/W
Τνj		- 40+ 150	°C
Tatg		- 55+ 150	°C
RC	P _R = 1 W	2050	Ω
		10	nF
Fu		4	Α
w		10	g
Case		G 5	

Miniature Bridge Rectifiers

SKB B ... C 3200/2200 SKBa B ... C 3200/2200

Features

- Compact plastic package with in-line terminals
- · High blocking voltage
- SKBa with avalanche characteristics
- Plastic material used for carries Underwriters Laboratories flammability classification 94 V=0

Typical Applications

- Internal power supplies for electronic equipment
- DC power supplies
- · Control equipment
- TV sets
- Avalanche types for inductive loads: Solenoids, Motor brakes

¹⁾ Freely suspended or mounted on an insulator

Mounted on a painted metal sheet of min. 250 x 250 x 1 mm

Fig. 1 Rated output current vs. ambient temperature

Fig. 6 Rated overload current vs. time

Fig. 9 Forward characteristics of a single diode

Fig. 2 Power dissipation vs. output current

Fig. 7 Rated reverse power dissipation vs. time

B 11 – 11

													—
													_
L										L			
													-
													<u> </u>