| Vrsm
Vrrm | VvRMS | I _D (T _{amb} = 45 °C)
4 A | | | |---------------|------------|--|------------|--------------------| | v | ν | Types | Cmax
µF | $_{\Omega}^{Rmin}$ | | 100 | 40 | SKB B 40 C3200/2200 | 10000 | 0,25 | | 400 | 125 | SKB B 80 C3200/2200 | 3000 | 8,0 | | 800 | 250 | SKB B 250 C3200/2200 | 1700 | 1,6 | | 900 | 380 | SKB B 380 C3200/2200 | 1800 | 2,4 | | 1200 | 500 | SKB B 500 C3200/2200 | 800 | 3 | | V(BR)min
V | VVRMS
V | Avalanche Type | | | | 1300 | 500 | SKBa B 500 C3200/2200 | 800 | 3 | | Symbol | Conditions | SKB
SKBa | Units | |------------------|--|--------------|--------------------------------------| | ID | T _{amb} = 45 °C; isolated ¹⁾
chassis ²⁾ | 2,7
4,0 | A
A | | IDCL | T _{amb} = 45 °C; isolated ¹⁾
chassis ²⁾ | 2,2
3,2 | A
A | | IFSM | T _{Vj} = 25 °C, 10 ms
T _{Vj} = 150 °C, 10 ms | 115
100 | A | | i ² t | T _{VJ} = 25 °C, 8,310 ms
T _{VJ} = 150 °C, 8,310 ms | 66
50 | A ² s
A ² s | | PRSM | t _p = 10 μs; avalanche type | 2000 | W | | VF | T _{VJ} = 25 °C; I _F = 10 A | 1,25 | ٧ | | V(TO) | T _{VJ} = 150 °C | 0,85 | v | | п | T _{VJ} = 150 °C | 24 | mΩ | | IRD | T _{VJ} = 25 °C; V _{RD} = V _{RRM} = 100 V
≥ 400 V
V _{RD} = V(BR)min | 20
5
5 | μΑ
μΑ
μΑ | | | T _{VJ} = 150 °C; V _{DR} = V _{RRM} = 100 V
≥ 400 V | 1
0,6 | mA
mA | | trr | T _{VJ} = 25 °C | typ. 10 | μs | | fG | | 2000 | Hz | | Rthja | isolated ¹⁾
chassis ²⁾ | 22
15 | °C/W | | Τνj | | - 40+ 150 | °C | | Tatg | | - 55+ 150 | °C | | RC | P _R = 1 W | 2050 | Ω | | | | 10 | nF | | Fu | | 4 | Α | | w | | 10 | g | | Case | | G 5 | | ## Miniature Bridge Rectifiers SKB B ... C 3200/2200 SKBa B ... C 3200/2200 ## Features - Compact plastic package with in-line terminals - · High blocking voltage - SKBa with avalanche characteristics - Plastic material used for carries Underwriters Laboratories flammability classification 94 V=0 ## Typical Applications - Internal power supplies for electronic equipment - DC power supplies - · Control equipment - TV sets - Avalanche types for inductive loads: Solenoids, Motor brakes ¹⁾ Freely suspended or mounted on an insulator Mounted on a painted metal sheet of min. 250 x 250 x 1 mm Fig. 1 Rated output current vs. ambient temperature Fig. 6 Rated overload current vs. time Fig. 9 Forward characteristics of a single diode Fig. 2 Power dissipation vs. output current Fig. 7 Rated reverse power dissipation vs. time B 11 – 11 | | | | | | | | | | | | | | — | |---|--|--|--|--|--|--|--|--|--|---|--|--|----------| _ | L | | | | | | | | | | L | - | <u> </u> |