

SP8665B 1000MHz ÷ 10 **SP8668B** 1500MHz ÷ 10

The SP8665/8 are asynchronous ECL counters which provide ECL compatible outputs. They feature an ECL compatible input inhibit which simplifies the design of frequency counters and other instrumentation.

FEATURES

- ECL Compatible Output
- AC Coupled Input
- Clock Inhibit Input

QUICK REFERENCE DATA

- Supply Voltage: -6.8V
- Power Consumption: 500mW
- Temperature Range: 0°C to +70°C

Fig.1 Pin connections - top view

ABSOLUTE MAXIMUM RATINGS

Supply voltage -8V
Output current 20mA
Storage temperature range -55 °C to +150 °C
Max. junction temperature +175 °C
Max. clock I/P voltage 2.5V p-p

Fig.2 Functional diagram

ELECTRICAL CHARACTERISTICS

Supply voltage: Vcc = 0V $\,$ VEE = -6.8V \pm 0.3V $\,$ Tamb (B grade) = 0°C to +70°C

Characteristic	Symbol	Value		Units	Grade	Conditions	Notes
		Min.	Max.	Gills	Grade	Contamoris	
Maximum frequency(sine wave I/P)	fmax	1.0		GHz	SP8665B	Input = 400-1200mV p-p	Note 5
2,000		1.5		GHz	SP8668B	Input = 600-1200mV p-p	Note 5
Minimum frequency(sine wave I/P)	fmin		150	MHz	All	Input = 600-1200mVp-p	Note 6
Current consumption	lee		105	mA	All	VEE = -6.8V	Note 6
Output low voltage	VoL	-1.87	-1.5	V	All	VEE = -6.8V (25° C)	
Output high voltage	Voн	-0.87	-0.7	V	All	VEE = -6.8V (25° C)	
Minimum output swing	Vouт	500		m۷	All		Note 5
Clock inhibit high threshold voltage	VINBH	-0.96	ĺ	V	All	Vee = -6.8V (25° C)	
Clock inhibit low threshold voltage	VINBL		-1.62	٧	All	VEE = -6.8V (25° C)	

NOTES

- Unless otherwise stated the electrical characteristics are guaranteed over specified supply, frequency and temperature range.
- The test configuration for dynamic testing is shown in Fig.6.

 The temperature coefficient of VoH = +1.3mV/°C and VoL = +0.5mV/°C but these are not tested.
- The temperature coefficient of VINB = +0.8mV/°C but this is not tested.
- Tested at 25°C and 70°C only. Tested at 25°C only.

Fig.3 Typical input characteristic SP8668. The SP8665 operating window is similar except for the maximum operating frequency

Fig.4 Timing diagram (N.B. output waveform is asymmetric)

SP8665/8B

OPERATING NOTES

- 1. The clock input (pin 10) should be capacitively coupled to the signal source. The input signal path is completed by connecting a capacitor from the internal bias decoupling, pin 12, to ground.
- 2. If no signal is present the device will self-oscillate. If this is undesirable it may be prevented by connecting a 15k resistor from the input to V_{EE} (i.e. Pin 10 to Pin 7). This will reduce the input sensitivity by approximately 100mV.
- 3. The clock inhibit input is compatible with standard ECL III/10K using a common 0V. A 6k pulldown resistor is included on the chip. The input should be left open to DC

when not in use, but should be bypassed for RF signals with a 1nF capacitor to ensure maximum noise immunity.

- 4. Input impedance is a function of frequency. See Fig. 5.
- 5. The emitter follower output includes an internal 3k pulldown resistor and is compatible with ECL II, but can be interfaced with ECL III/10K by the inclusion of two resistors. See Fig. 7.
- 6. Note that all components should be suitable for the frequency in use.
- 7. The circuit will operate to DC but the input slew rate must be 200V/µs or greater.

Fig.5 Typical input impedance. Test conditions: supply voltage -6.8V, ambient temperature 25°C, frequencies in MHz, impedances normalised to 50 ohms.

Fig.6 Test circuit

Fig.7 SP8665/8 to ECL 10K interface

Fig.8 Typical application showing interfacing